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Equation of state for fluid mixtures of hard spheres and linear homonuclear fused hard spheres

J. Largo and J. R. Solana*
Departamento de Fı´sica Aplicada, Universidad de Cantabria, 39005 Santander, Spain

~Received 31 March 1998!

This paper develops a theoretically based equation of state for fluid mixtures consisting of hard spheres and
linear homonuclear fused hard spheres. The procedure is based on the equation of state previously developed
for monocomponent athermal fluids. The equation of state only requires two parameters, namely the averaged
effective molecular volume of the molecules in the mixture and the corresponding effective nonsphericity
parameter. These parameters can be obtained from the geometry of the molecules forming the mixture. The
results are in excellent agreement with simulation data and compare favorably with those obtained from other
theories for athermal fluid mixtures.@S1063-651X~98!12508-4#

PACS number~s!: 05.70.Ce, 64.10.1h
re
m
n
m
ith
ng
n
ti
a
ls

ar
s

hi
so
nc
os
h

of

d
e

ix
o

he

ui

de
ix

om
o

tri-
lly,
ob-
or
l-

mix-
nd
it

ol-

r
t

an
ear
liza-
at
to

CB

ter-
pa-

the
the

of
of
is
ex
us

tate
ard
ith
is-

t

I. INTRODUCTION

For several decades, athermal fluids and their mixtu
have been the subject of a great deal of research fro
theoretical viewpoint as well as with computer simulatio
This is because these fluids have many properties in com
with real fluids but are simpler to understand and deal w
Moreover, one of the most fruitful approaches for studyi
fluids with more realistic intermolecular forces is by mea
of perturbation theories. These theories consider attrac
forces as a perturbation of repulsive ones, which in turn
often modeled through infinitely steep repulsive potentia
To do so, the thermodynamic properties of the real fluid
usually expanded in power series of the inverse of the ab
lute temperature around the infinite temperature limit. At t
limit, real molecular fluids behave like athermal fluids,
that we must first know the properties of a suitable refere
athermal fluid. The most convenient choice is one wh
molecules are similar in shape to those of the real fluid. T
same is true for fluid mixtures.

Although the Percus-Yevick equation for a mixture
hard spheres was solved@1# in 1964, it was not until the early
1970’s that a sufficiently accurate equation of state was
veloped@2,3# for this mixture. This can be considered th
starting point of an increasing interest in athermal fluid m
tures. Nearly at the same time, the scaled particle the
~SPT! was developed@4# for hard convex body~HCB! fluid
mixtures. The SPT equation of state for mixtures was furt
improved in several different ways@5,6# on a semiempirical
basis.

About one decade later, a theory for chain molecular fl
mixtures, thermodynamic perturbation theory~TPT!, was de-
veloped@7,8#. Since then, advances in this field have spee
up. In the 1990’s, equations of state for athermal fluid m
tures have been derived from Percus-Yevick~PY! theory
@9,10#, bonded hard-sphere~BHS! theory @11#, generalized
Flory ~GF! theory @12#, and generalized Flory dimer~GFD!
theory @13#.

At present, all the above-mentioned theories suffer fr
some limitations. Those based on SPT are not expected t
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accurate for mixtures of highly asymmetrical molecules@11#.
Moreover, the nonsphericity parameter for large asymme
cal polyatomic molecules must be calculated numerica
which means that analytical equations of state cannot be
tained for those fluids and their mixtures. TPT and GF
GFD theories apply to flexible chains, but not to rigid mo
ecules. Perhaps one of the most successful theories for
tures is the BHS theory, which is analytical, accurate, a
applicable to both rigid and flexible molecules. However,
only applies to fluids consisting of fused hard sphere~FHS!
molecules, but not to pure fluids or mixtures of convex m
ecules.

In a previous paper@14#, an accurate equation of state fo
hard convex body~HCB! fluid mixtures was developed. I
was based on the equation of state derived earlier@15# for
pure HCB fluids. In the present paper we will derive
equation of state for mixtures of hard spheres and lin
homonuclear fused hard spheres. Formally, the genera
tion from the equation of state of HCB fluid mixtures to th
for mixtures containing nonconvex molecules is similar
the generalization from the equation of state of pure H
fluids to that for pure FHS fluids@16#. However, for mixtures
it is necessary to derive the required expressions to de
mine the effective molecular volumes and nonsphericity
rameters for the mixtures. These expressions depend on
geometrical characteristics of the molecules that form
mixture.

Section II summarizes the derivation of the equation
state for pure hard-body fluids. In Sec. III the equation
state for fluid mixtures consisting of convex molecules
derived and further generalized to mixtures of nonconv
molecules. In Sec. IV, expressions are obtained that allow
to determine the parameters involved in the equation of s
of mixtures of spheres and linear homonuclear fused h
spheres. Finally, in Sec. V, we compare the results w
those from other theories and with simulation data, and d
cuss the findings.

II. EQUATION OF STATE FOR PURE
HARD-BODY FLUIDS

Consider a one-component fluid at number densityr con-
sisting of HCB molecules. Letgav(0) denote the contac
value of the pair correlation function, andsav the average
2251 © 1998 The American Physical Society
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2252 PRE 58J. LARGO AND J. R. SOLANA
distance between the centers of a pair of molecules proje
onto the normal to the surface at the contact point, with b
averages being taken over all possible orientations of the
of molecules. LetS112 be the surface area of the body d
fined by the center of molecule 2 moving around molecul
while the two molecules remain in contact. Then, the co
pressibility factor can be expressed@17# in the form

ZHCB5
PV

NkT
511

1

6
rS112savgav~0!. ~1!

For identical molecules,S11252S18pR2, whereS is the
surface of the molecule andR the (1/4p) multiple of the
mean curvature integral.

As a particular case for hard spheres of diameters, ex-
pression~1! gives

ZHS511
2

3
prs3gHS~0!. ~2!

For a given densityr, if we consider spheres with volum
v5(p/6)s3 equal to those of the HCB molecules, from Eq
~1! and ~2!, we easily arrive at

ZHCB21

ZHS21
5

1

2
S a1

4
3 pR3

v
D sav

2R

gav~0!

gHS~0!
, ~3!

where the nonsphericity parameter or shape factor

a5
RS

3v
~4!

has been introduced.
It has been shown@15# that the approximations

sav

2R

gav~0!

gHS~0!
'1 ~5!

and

1

2
S a1

4
3 pR3

v
D 'a, ~6!

which are exact for hard spheres, that is, fora51, also hold
very accurately for nonspherical HCB molecules with mo
erate values ofa. Moreover, the small errors introduced b
these two approximations largely cancel each other out w
they are put into Eq.~3!.

Combining Eqs.~3!, ~5!, and~6!, we obtain the final form
of the equation of state for HCB fluids:

ZHCB511a~ZHS21!, ~7!

which showed@15# very good agreement with simulatio
data, when the Carnahan-Starling equation@18#

ZCS5
11y1y22y3

~12y!3 , ~8!

wherey5rv is the packing fraction, was used forZHS.
Equation of state~7! was extended@16,19# to FHS fluids

by taking into account the fact that, for them, the volume t
ed
h
air

1
-

.

-

n

t

a molecule excludes to any point of another molecule
greater than the molecular volumev, as Fig. 1 shows. There
fore, we had to introduce an effective molecular volumeveff,
and subsequently, an effective packing fractionyeff , instead
of the molecular volumev and the packing fractiony. More-
over, as the nonsphericity parameter cannot be obtained f
Eq. ~4! for nonconvex molecules, a definition based@20# on
the effective molecular volume was used. If this shape fac
is denoted byaeff , the resulting equation of state has th
form

ZFHS511aeff@ZCS~yeff!21#. ~9!

This equation was shown to provide very good agreem
with simulation data for both homonuclear@16# and hetero-
nuclear@19# FHS fluids.

III. EQUATION OF STATE FOR HARD-BODY
FLUID MIXTURES

Let us first consider mixtures of HCB molecules. Th
generalization of expression~1! for these fluid mixtures is

Zmix
HCB511

1

6 (
i , j

rxixjSi 1 js i j
avgi j

av~0!, ~10!

wherexi andxj are the mole fractions of typei and j mol-
ecules in the mixture. If we assume that the procedure o
lined in the preceding section can be applied to each term
the sum on the right-hand side, we will obtain

Zmix
HCB511(

i , j
a i j @ZCS~yi j !21#, ~11!

whereyi j 5rxixjv i j , with v i j 5(v i i 1v j j )/2.
If we consider separately each of the pure fluids form

the mixture, from Eq.~7!, we will have

Zii 21

a i i
5ZCS~yii !21, ~12!

where the right-hand side is the excess compressibility fa
of a pure fluid of hard spheres, each of them with the sa
volume as the HCB molecule. From Eq.~12!, the excess
compressibility factor of a pure HCB fluid forming the mix
ture, when scaled by means of the shape factor, reduce
that of a pure HS fluid. Therefore, mixing all those ‘‘scaled
fluids together we will obtain a hard-sphere fluid mixture.
that, introducing a suitable nonsphericity parameteramix for
the mixture, we can put

Zmix
HCB21

amix
5Zmix

HS ~ymix!21. ~13!

Here,Zmix
HS is the compressibility factor of a mixture of har

spheres,ymix5rvmix is the packing fraction of the mixture
and

vmix5(
i , j

xixjv i j ~14!
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is the averaged volume of a molecule of the mixture eithe
HCB molecules or of hard spheres, because the sphere
speciesi in the HS mixture have the same volume and
same mole fraction as molecules of speciesi in the HCB
mixture.

On the other hand, the low density expansion of Eq.~11!
up to first order gives

Zmix
HCB21'(

i , j
a i j 4yi j 5(

i , j
a i j

v i j

vmix
4yi j

vmix

v i j

54ymix(
i , j

a i j xixj

v i j

vmix
. ~15!

As a particular case, for a mixture of hard spheres, tak
a i j 51 for everyi and j we have

Zmix
HS 21'4ymix(

i , j
xixj

v i j

vmix
. ~16!

If we take into account expression~14!, the preceding equa
tion reduces to

Zmix
HS 21'4ymix . ~17!

Introducing this result into Eq.~13! we obtain

Zmix
HCB21'amix4ymix , ~18!

so that

amix5(
i , j

xixja i j

v i j

vmix
. ~19!

Although expression~19! has been derived from a low
density expansion, it should hold at any density becauseamix
is a geometrical parameter that depends on the shape o
molecules forming the mixture but not on density.

If a procedure similar to that used to derive Eq.~18! were
applicable for higher order terms in the expansion, we wo
arrive at

Zmix
HS 21'4ymix110ymix

2 118ymix
3 1¯5ZCS~ymix!21,

~20!

FIG. 1. Shaded area represents the difference between effe
and real molecular volume of a hard dumbbell~a! as ‘‘seen’’ by a
hard sphere of the same diameter as each of the spheres o
dumbbell and~b! as ‘‘seen’’ by a bigger sphere.
f
of

e

g

the

d

that is, we would obtain the equation of state of the H
mixture as the CS equation of state of a pure fluid having
same packing fraction as the mixture. Although this see
reasonable, the fact is that if each of the pure HS fluids ob
the Carnahan-Starling equation, the compressibility fac
for the m-component hard-sphere mixture is@2,3#

Zmix
HS 5

6

pr S z0

12z3
1

3z1z2

~12z3!2 1
3z2

3

~12z3!3 2
z3z2

3

~12z3!3D ,

~21!

where

z l5
pr

6 (
i

xi~s i !
l . ~22!

In the latter equationr is the total number density ands i is
the diameter of spheres of componenti , so thatz3 represents
the packing fractionymix of the mixture. If we take into ac-
count thatr5ymix /vmix , it is clear that thez l can be ex-
pressed in terms ofymix , and the same is true for expressio
~21!. If we do so, we will arrive at an expression that do
not coincide with the CS equation. In particular, at lo
enough densities, instead of Eq.~18! we will have

Zmix
HS 21'Bmix*HSymix , ~23!

whereBmix*HS is the second virial coefficient of the HS mix
ture, which, from Eq.~21!, is given by

Bmix*HS5

(
i , j

xixjv i j 13(
i , j

xixjv i
1/3v j

2/3

(
i , j

xixjv i j

5113amix
HS ,

~24!

where amix
HS is a sort of shape factor for the HS mixtur

which in general differs from unity, unlike what occurs fo
the pure HS fluid. Therefore, from Eq.~13!, the compress-
ibility factor of HCB fluid mixtures can be expressed

Zmix
HCB511amix@Zmix

HS ~ymix!21#, ~25!

together with Eqs.~14! and~19!, andZmix
HS(ymix) given by Eq.

~21!.
Note that, for a binary mixture of spheres with differe

sizes,a1151 anda2251. This givesa1251 and, from Eq.
~19!, amix51, and Eq.~25! is reduced to the equation of sta
~21! for the hard sphere fluid mixture. Therefore, althou
expression~19! has the form of a mixing rule, it is not ex
actly so, because it is not used in combination with the p
HCB fluid equation of state to obtain the equation of state
the HCB fluid mixture. amix , as given by Eq.~19!, scales
the excess compressibility factor of ahard sphere fluid mix-
ture to obtain that corresponding to the HCB fluid mixture

Equation~25!, which showed@14# very good agreemen
with simulation data for binary mixtures of hard spheres w
hard spherocylinders, can be readily extended to mixtu
having nonconvex molecules. To do so, we must introd
an effective packing fraction of the mixtureymix

eff 5rvmix
eff ,

wherevmix
eff is the effective molecular volume of the mixtur

ive

the
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FIG. 2. Value of the ratio (Zmix
HB 21)/@Zmix

HS(ymix
eff )21# for different HMD-HS mixtures as a function of the effective packing fractionymix

eff

of the mixture. Points: results from simulation data from Refs.@21# ~circles! and@22# ~squares!. Continuous line: Eq.~26!. Error bars account
for the inaccuracyDZ in the simulation data, when known, according toDZ/@Zmix

HS(ymix
eff )21#.
ds

and the effective nonsphericity parameteraeff , for the same
reasons pointed out within the context of pure FHS flui
Thus, we will have

Zmix
HB 511amix

eff @Zmix
HS ~ymix

eff !21#, ~26!
.
where

ymix
eff 5(

i , j
xixjyi j

eff ~27!

and



PRE 58 2255EQUATION OF STATE FOR FLUID MIXTURES OF . . .
FIG. 3. As in Fig. 2 for HMLST-HS mixtures. Points: simulation data from Ref.@23#.
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amix
eff 5(

i , j
xixja i j

eff
v i j

eff

vmix
eff , ~28!

with

vmix
eff 5(

i , j
xixjv i j

eff , ~29!

and it is clear thatymix
eff 5rvmix

eff andyi j
eff5rvij

eff .
For convex moleculesv i j

eff5vij anda i j
eff5aij , so that for a

mixture containing only HCB moleculesvmix
eff 5vmix and

amix
eff 5amix , and Eq.~26! is reduced to Eq.~25!. Therefore,

Eq. ~26! applies to hard-body mixtures regardless of whet
they have only convex molecules or not. However, we m
take into account the fact that, when speciesi and j are both
convex molecules, it holds thatv i j 5v j i and a i j 5a j i . By
contrast, when one, or both, of the molecules is noncon
v i j

effÞvji
eff anda i j

effÞaji
eff , in general. This is because for no

convex molecules, as Fig. 1 shows, the effective volumev i i
eff

corresponding to moleculei as ‘‘seen’’ by another molecule
of the same species is not the same, in general, as the vo
v i j

eff of a molecule of speciesi as ‘‘seen’’ by a molecule of
speciesj , which in turn is different fromv j i

eff , the volume of
a molecule of speciesj as ‘‘seen’’ by a molecule of specie
i .

IV. DETERMINATION OF THE PARAMETERS

For a pure fluid consisting of linear homonuclear FH
molecules, the effective nonsphericity parameteraeff can be
defined@20# in the form
r
t

x

me

aeff5
1

3p

~]veff/]s!~]2veff/]s2!

veff , ~30!

wheres is the diameter of one of the spheres that form t
molecule and, for a FHS molecule consisting ofn spheres
with center to center distancel , the effective volume is given
by @20#

veff5
ps3

6 F113L* 2
L* 3

2~n21!2 23~n21!h* uG , ~31!

where L* 5L/s5(n21)l * , l * 5 l /s, h* 5h/s5(1
2 l * 2/4)1/2, andu5sin21(l* /2), so that

]veff

]s
5

ps2

2 F11
5L*

2
23~n21!h* u2

L* 2u

4~n21!h* G
~32!

and

]2veff

]s2 5psF112L* 23~n21!h* u2
3L* 2u

8~n21!h*

1
L* 3

16~n21!2h* 2 1
L* 4u

32~n21!3h* 3G . ~33!

For the mixtures in which we are interested here, nam
binary mixtures of linear fused hard spheres with ha
spheres, expressions~30!, ~31!, ~32!, and~33! with n52 or 3
can be used to obtainv11

eff and a11
eff , that is, the parameters

corresponding to the interaction of two identical FHS mo
ecules. For the sphere-sphere interaction we will ha
v22

eff5v225(p/6)s3 anda22
eff5a2251. These expressions als
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apply forv21
eff anda21

eff , the volume of a sphere as ‘‘seen’’ b
a FHS molecule and the corresponding nonsphericity par
eter. Forv12

eff , the effective volume of a FHS molecule a
‘‘seen’’ by a sphere, expression~31! is no longer valid unless
the diameter of the sphere is equal to the diameter of eac
the spheres that form the dumbbell. Fora12

eff , definition ~30!
also needs to be modified, because now, in general, we
two different diameters.

To determinev12
eff , consider Fig. 1~b!. We will have

v12
eff5

p

6
s1

3F11
3

2
L* ~s2*

211!

2
L* 3

2~n21!2

23h* ~n21!us2*
2G , ~34!

where now h5@(s11s2)2/42 l 2/4#1/2, u5arcsin@l/(s1
1s2)#, and an asterisk on a quantity means that it is in un
of s1 .

Then, we can generalize definition~30! to the form

a12
eff5

1

3p

v128
effv129

eff

v12
eff , ~35!

where

v128
eff5S ]v12

eff

]s1
D 1S ]v12

eff

]s2
D ~36!

and

v129
eff5S ]2v12

eff

]s1
2 D 12S ]2v12

eff

]s1]s2
D 1S ]2v12

eff

]s2
2 D . ~37!

FIG. 4. Compressibility factor of HMD-HS mixtures for spher
with the same diameter as that of each of the spheres that form
dumbbell, as a function of the packing fractiony of the mixture.
Points: simulation data from Refs.@21# and @22#, for x150.1
~circles!, x150.25 ~squares!, x150.5 ~diamonds!, x150.75 ~tri-
angles!, andx150.9 ~crosses!. Continuous line: Eqs.~26!, ~40!, and
~45!, indistinguishable at the scale of the figure. For clarity, ea
curve, and the corresponding simulation data, have been displ
upwards a unit with respect to that immediately below.
-

of

ve

s

These derivatives can be readily obtained from Eq.~34! in
the form

v128
eff5

p

2
s1

2F11
L* ~2s2*

212s2* 11!

s2* 11
23h* ~n21!s2* u

2
L2s2* u

4h* ~n21!
2

~s2*
221!s2* u

4h* ~n21!G , ~38!

and

v129
eff5ps1H 11F11

s2* ~3s2* 15!

2~s2* 11!2 GL*

1
L* 3s2*

~s2* 11!8h* 2~n21!2 1
L* s2* ~s2*

221!

~s2* 11!8h* 2

23h* ~n21!u2
3L* 2

8h* ~n21!
u1

L* 4

32h* 3~n21!3 u

2
~23s2*

212s2* 11!L* 2u

32h* 3~n21!
2

~s2*
221!u

2h* ~n21!J .

~39!

It can be seen that, fors15s25s, expressions~34!, ~38!,
and ~39! reduce to Eqs.~31!, ~32!, and~33!, respectively.

V. RESULTS AND DISCUSSION

From the expressions derived in the preceding sect
together with Eqs.~28! and ~29!, we have determined the
values of the parameters for the types of mixtures conside
in this paper. They are listed in Table I.

According to the considerations of Sec. III, the rat
@Zmix

HB 21#/@Zmix
HS(ymix

eff )21# should be a constant for any den
sity. In order to test whether this is the case, we have plo
this ratio in Fig. 2 for several different mixtures of har

he

h
ed

FIG. 5. As in Fig. 4 for spheres with volumev2 equal to the
volumev1 of the dumbbells~the two lowest curves! and for spheres
with v25

3
2 v1 ~the two highest ones!. In all casesx150.5. Points:

simulation data from Ref.@22# for l * 50.6 ~circles and diamonds!,
l * 51 ~squares and triangles!. Continuous line: Eqs.~26! and ~40!,
indistinguishable at the scale of the figure. Dashed line: Eq.~45!.
From top down, for clarity the first, second, and third curve, and
corresponding simulation data, have been displaced upwards
five, and one unit, respectively.
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FIG. 6. As in Fig. 4 for HMLST-HS mixtures. The three lowe
curves correspond to spheres with the same diameter as that of
sphere that forms the triatomic molecule, and the two high
curves correspond to spheres with volumev2 equal to the volume
v1 of the triatomic molecules. In every casel * 50.8. Points: simu-
lation data from Refs.@23, 24#. For the four highest curves, th
continuous line represents the results from Eq.~45!, and the dashed
line represents those from Eqs.~40! and ~45!, indistinguishable at
the scale of the figure. The three equations are indistinguishab
the lowest curve at the scale of the figure. Dashed line: Eq.~45!.
From top down, for clarity, the first, second, third, and four
curves, and the corresponding simulation data, have been disp
upwards seven, six, two, and one unit, respectively.

TABLE I. Parameters involved in equation of state~23! for the
mixtures considered. Lengths are in units ofs1 , and volumes in
units of s1

3. vmix is the mean volume of a molecule in the mixtur
In every case, subscript 2 refers to the spheres.

x1 vmix vmix
eff amix

eff

HS1HMD
l 151/s15s2

0.10 0.5760 0.5833 1.0605
0.25 0.6545 0.6728 1.1379
0.50 0.7854 0.8219 1.2446
0.75 0.9163 0.9711 1.3344
0.90 0.9948 1.0606 1.3831

l 150.6/s15s2

0.50 0.7309 0.7383 1.0717
l 151/v15v2

0.50 1.0472 1.0876 1.2055
l 150.6/v15v2

0.50 0.9383 0.9463 1.0711
l 151/v15(2/3)v2

0.50 1.1729 1.1814 1.0633
l 150.6/v15(2/3)v2

0.50 1.3090 1.3518 1.1811
HS1HMLST

l 150.8/s15s2

0.25 0.7732 0.7887 1.2079
0.50 1.0229 1.0538 1.3460
0.75 1.2726 1.3188 1.4564

l 150.8/v15v2

0.25 1.5222 1.5423 1.1362
0.75 1.5222 1.5732 1.4118
spheres with homonuclear hard dumbbells~HMD! and in
Fig. 3 for mixtures of hard spheres with hard homonucle
linear symmetric triatomics~HMLST!. For Zmix

HB we have
used the simulation data@21–24#, and forZmix

HS Eq. ~21!. Al-
though in several cases the simulation data are scarce, i
be seen that the constancy holds very accurately.

On the other hand, according to Eq.~26! the value of the
above-mentioned ratio must be very approximatelyamix

eff . In
the same figures we have plotted the values of this param
showing that they are consistent with the value of the ra

In Figures 4–6 the results from equation of state~26! are
compared with those from the equation of state

ZSPT5
1

~12y!
1

3ay

~12y!2

1
y2@~49a231!2y~11a27!2y2~25a221!#

6~12y!3 ,

~40!

wherey is the packing fraction of the mixture and

a5

(
i

xiRi(
i

xiSi

3(
i

xiv i

~41!

is the nonsphericity parameter of the mixture. For hom
nuclear FHS with diameters and reduced center to cente
distancel * 5 l /s.0.5, parametersR, S, andv are given by

R5@~m21!l * 12#s/4, ~42!

S5@~m21!l * 11#ps2, ~43!

and

v5@ 1
2 ~m21!~3l * 2 l * 3!11#ps3/6. ~44!

Equation~40! was derived@25# on the basis of the form o
the SPT equation of state, and proved@26# to be very accu-
rate for the kind of mixtures we are considering here.

The same figures also include the results from B
theory, which expresses the equation of state for a multico
ponent mixture of polyatomic molecules in the form@11#

Zmix
BHS5

PV

NmkT

5(
i

xm~ i !Ns~ i !Zmix
HS 2(

i
xm~ i !

3 (
bonds

F11
r

gjk
HS~s jk!

S ]gjk
HS~s jk!

]r D
T,N

G , ~45!

whereNm is the total number of molecules andxm( i ) is the
mole fraction of molecules of speciesi , each of them formed
by Ns( i ) hard spheres. The sum over bonds is taken over
number of bonding contactsjk between the spheresj andk
of a molecule of speciesi , and gjk

HS(s jk) is obtained from
Eq. ~21!. Although, in principle, BHS theory applies to fluid
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consisting of molecules formed by nonoverlapping sphe
it can also be used for FHS fluids@11#. To do so, the FHS
molecule is replaced by an equivalent BHS, in which t
relative diameters of the spheres are chosen in such a
that the relationaFHS5aBHS is satisfied. The nonsphericit
parameter is determined from Eq.~4! using expressions ofR,
S, andv derived for diatomic@27# and triatomic@28# mol-
ecules.

As can be seen in Figs. 4 and 5, for HS-HMD mixture
Eq. ~26! and the SPT Eq.~40! give nearly the same accurac
in all cases. The BHS results from Eq.~45! agree with those
from the two preceding equations for mixtures in whi
HMD molecules consist of tangent spheres, but its accur
worsens when the spheres of the diatomic molecule over

With regard to the results for HS-HMLST mixtures, Fi
6 shows that there is excellent agreement between Eq.~26!
and simulation in all cases. The accuracy of SPT and B
results is very good for mixtures with low values of the mo
fraction of HMLST, but worsens slightly as the concentr
tion of HMLST molecules increases.

To summarize, in this paper we have extended an eq
tion of state previously developed for HCB fluid mixtures
mixtures in which at least one of the components consist
nonconvex molecules. The parameters involved in the eq
tion of state can be determined from the geometry of
molecules forming the mixture. To do so, expressions
determining these parameters have been obtained. Th
sults are in close agreement with simulation data for H
.

le
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HMD and HS-HMLST mixtures and compare favorably wi
those from SPT and BHS theories.

The derived equation of state is intended for use in
normal fluid density range. It should be interesting to test
performance for higher densities but, to the best of o
knowledge, simulation data are not available in that range
the mixtures considered here. Moreover, we must be car
in applying this equation of state to higher densities, beca
evidence has been found@29,30# of demixing phase transi
tions in different binary hard-core mixtures at high densiti
Additionally, binary mixtures of prolate and oblate mo
ecules can exhibit a variety of phases at high densities@30#,
before demixing occurs.

On the other hand, it has been shown@31# that the equa-
tion of state~21! for hard sphere mixtures, in which is base
the equation of state derived here, is unaccurate at dens
close to the solid-fluid transition for large size ratios. The
retical evidence has been provided@32# about the possible
existence of a demixing phase transition in additive h
sphere mixtures, which could explain this inaccuracy. The
fore, it seems likely that our equation will also fail at dens
ties higher than those corresponding to the normal fluid.
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